Skip to content

CaliAli parameter settings

The CaliAli pipeline uses a structured approach to initialize, configure, and manage parameters across different processing stages. The function CaliAli_parameters() acts as the central hub for handling parameters, ensuring modularity and flexibility.


📌 Key Features of CaliAli Parameter Management

1️⃣ Modular Parameter Handling

CaliAli organizes its processing pipeline into separate submodules, each with its own set of parameters:

  • Downsampling
  • Preprocessing (detrending, background processing)
  • Motion Correction (rigid and non-rigid)
  • Inter-Session Alignment
  • CNMF-E (Calcium signal extraction and demixing)

2️⃣ Flexible Input Handling

CaliAli parameters can be set in two ways:

  1. Default Initialization:
    If no inputs are provided, default parameters are loaded:
opt = CaliAli_parameters();
  1. Custom Parameter Structure:
    Users can provide an existing structure to modify specific parameters:
opt = CaliAli_parameters(existing_opt);

The function CaliAli_demo_parameters() demonstrates how to create this structure. The recommended approach for analyzing your own data is to modify and duplicate this code to suit your needs: open(CaliAli_demo_parameters());


Adjusting CaliAli Parameters.

CaliAli requires setting 33 parameters. However, in practice you only need to strictly focus on three:

  1. Frame rate: sf
  2. Neuron filtering size: gSig which correspond to 1/5 of the average neuron size in pixels.
  3. System Memory:
Parameter Name Default Value Description How to Choose
memory_size_to_use total_system_memory_GB Total available memory for computation Adjust based on available RAM.
memory_size_per_patch 16 Memory allocated per patch Adjust based on available RAM and number of patches.

For advanced users, a detailed description of other parameters and methods for setting them can be found in: Parameter Index

When you run CaliAli_options=CaliAli_demo_parameters(); you will get a structure as follow:

 CaliAli_options
├─ downsampling
  ├─ BVsize
    Value: [1.5 2.25]
  ├─ file_extension
    Value: 'avi'
  └─ ...
├─ preprocessing
  ├─ dendrite_filter_size
    Value: [0.5 0.6 0.7 0.8]
  ├─ dendrite_theta
    Value: 30
  └─ ...
└─ ...

Once familiarized with the CaliAli_options structure proceed to Downsampling