CaliAli parameter settings
The CaliAli pipeline uses a structured approach to initialize, configure, and manage parameters across different processing stages. The function CaliAli_parameters() acts as the central hub for handling parameters, ensuring modularity and flexibility.
📌 Key Features of CaliAli Parameter Management
1️⃣ Modular Parameter Handling
CaliAli organizes its processing pipeline into separate submodules, each with its own set of parameters:
- Downsampling
- Preprocessing (detrending, background processing)
- Motion Correction (rigid and non-rigid)
- Inter-Session Alignment
- CNMF-E (Calcium signal extraction and demixing)
2️⃣ Flexible Input Handling
CaliAli parameters can be set in two ways:
- Default Initialization:
If no inputs are provided, default parameters are loaded:
- Custom Parameter Structure:
Users can provide an existing structure to modify specific parameters:
The function CaliAli_demo_parameters() demonstrates how to create this structure. The recommended approach for analyzing your own data is to modify and duplicate this code to suit your needs: open(CaliAli_demo_parameters());
Adjusting CaliAli Parameters.
CaliAli requires setting 33 parameters. However, in practice you only need to strictly focus on three:
- Frame rate:
sf
- Neuron filtering size:
gSig
which correspond to 1/5 of the average neuron size in pixels. - System Memory:
Parameter Name | Default Value | Description | How to Choose |
---|---|---|---|
memory_size_to_use |
total_system_memory_GB |
Total available memory for computation | Adjust based on available RAM. |
memory_size_per_patch |
16 |
Memory allocated per patch | Adjust based on available RAM and number of patches. |
For advanced users, a detailed description of other parameters and methods for setting them can be found in: Parameter Index
When you run CaliAli_options=CaliAli_demo_parameters();
you will get a structure as follow:
◼ CaliAli_options
├─ downsampling
│ ├─ BVsize
│ │ Value: [1.5 2.25]
│ ├─ file_extension
│ │ Value: 'avi'
│ └─ ...
├─ preprocessing
│ ├─ dendrite_filter_size
│ │ Value: [0.5 0.6 0.7 0.8]
│ ├─ dendrite_theta
│ │ Value: 30
│ └─ ...
└─ ...
Once familiarized with the CaliAli_options
structure proceed to Downsampling